Skip to main content

Instructions

Student presentations must have a faculty sponsor.

Abstracts must include a title and a description of the research, scholarship, or creative work. The description should be 150-225 words in length and constructed in a format or style appropriate for the presenter’s discipline.

The following points should be addressed within the selected format or style for the abstract:

  • A clear statement of the problem or question you pursued, or the scholarly goal or creative theme achieved in your work.
  • A brief comment about the significance or uniqueness of the work.
  • A clear description of the methods used to achieve the purpose or goals for the work.
  • A statement of the conclusions, results, outcomes, or recommendations, or if the work is still in progress, the results you expect to report at the event.

Presenter photographs should be head and shoulder shots comparable to passport photos.

Additional Information

More information is available at carthage.edu/celebration-scholars/. The following are members of the Research, Scholarship, and Creativity Committee who are eager to listen to ideas and answer questions:

  • Jun Wang
  • Kim Instenes
  • John Kirk
  • Nora Nickels
  • Andrew Pustina
  • James Ripley

Cell-cycle Checkpoints and Aneuploidy on the Path to Cancer

Name: Danielle Borchart
Major: Neuroscience and Psychology
Hometown: Haslett, MI
Faculty Sponsor: Amareshwar Singh
Other Sponsors:  
Type of research: Independent research

Abstract

The cell cycle is a complex sequence of events through which a cell duplicates its contents and divides, and involves many regulatory proteins for proper cellular reproduction, including cyclin proteins and cyclin-dependent kinases, oncogenes and tumor-suppressor genes, and mitotic checkpoint proteins. Mutations of any of these regulatory mechanisms can lead to the reproduction of cells carrying genetic mutations or abnormal numbers of chromosomes, resulting in genomic instability. Chromosomal instability, contributing to genomic instability, refers to abnormalities in the number of chromosomes, and leads to aneuploidy. The role of aneuploidy in cancer cell development is often disputed, as conflicting hypotheses and research make it unclear as to whether aneuploidy is a cause or consequence of cancer. Here, through a review which has been published in In Vivo journal, we present an overview of the importance of cell-cycle checkpoint regulation and chromosomal instability in the development of cancer, and discuss evidence for conflicting arguments for the role of aneuploidy in cancer, leading us to conclude that further investigation of this role would benefit our understanding of cancer development.

Poster file

$(function() { $('#print h2').prepend('Print'); $('#print h2 a').click(function() { window.print(); return false; }); });